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Abstract
We propose a new iterative algorithm for generating a subset of eigenvalues
and eigenvectors of large matrices which generalizes the method of optimal
relaxations. We also give convergence criteria for the iterative process, and
investigate its efficiency by evaluating computer storage and time requirements
and by a few numerical tests.

PACS numbers: 02.70.-c 21.60.-n 71.10.-w

The increase in computational power has stimulated a growing interest toward developing and
refining methods which allow one to determine selected eigenvalues of a complex quantum
system with extreme accuracy. Widely adopted, especially for computing ground state
properties, are the quantum Monte Carlo methods [1], where a properly defined function
of the Hamiltonian is used as a stochastic matrix which guides a Markov process to sample
the basis.

Alternatively, one may resort to direct diagonalization methods, like the Lanczos [2] and
Davidson [3] algorithms, widely used in several branches of physics. The critical points of
direct diagonalization methods are the amount of memory needed and the time spent in the
diagonalization process. Because of these limitations, several systems are still out of reach
even with the computing power now available.

In this letter we present an iterative method, which is extremely easy to implement, for
generating a subset of eigenvectors of a large matrix, give convergence criteria and show that
it represents a generalization of the method of optimal relaxations [4].

We assume first that the matrix A represents a self-adjoint operator Â in an orthonormal
basis {|1〉, |2〉, . . . , |N〉} and is symmetric (aij = 〈i|Â|j〉 = aji). For the sake of simplicity,
we illustrate the procedure for a one-dimensional eigenspace. The algorithm consists of a first
approximation loop and subsequent iterations of refinement loops. The first loop goes through
the following steps:
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(1a) Start with the first two basis vectors and diagonalize the matrix

(
λ
(1)
1 a12

a12 a22

)
where

λ
(1)
1 = a11.

(1b) Select the eigenvalue λ(1)2 and corresponding eigenvector |φ(1)2 〉 = K
(1)
2,1|φ(1)1 〉 +K(1)

2,2|2〉
where |φ(1)1 〉 ≡ |1〉.

for j = 3, . . . , N
(1c) compute b(1)j = 〈φ(1)j−1|Â|j〉.

(1d) Diagonalize the matrix

(
λ
(1)
j−1 b

(1)
j

b
(1)
j ajj

)
.

(1e) Select the eigenvalue λ(1)j and the corresponding eigenvector |φ(1)j 〉.
end j

The first loop yields an approximate eigenvalue λ(1)N ≡ E(1) ≡ λ
(2)
0 and an approximate

eigenvector |ψ(1)〉 ≡ |φ(1)N 〉 ≡ |φ(2)0 〉 = ∑N
i=1 K

(1)
N,i |i〉. With these new entries we start an

iterative procedure which goes through the following refinement loops:

for n = 2, 3, . . . , till convergence
for j = 1, 2, . . . , N

(2a) Compute b(n)j = 〈φ(n)j−1|Â|j〉.
(2b) Solve the eigenvalue problem in the general form

det

[ (
λ
(n)
j−1 b

(n)
j

b
(n)
j ajj

)
− λ

(
1 K

(n)
j−1,j

K
(n)
j−1,j 1

) ]
= 0

where the appearance of the metric matrix follows from the non-orthogonality of
the redefined basis |φnj−1〉 and |j〉.

(2c) Select the eigenvalue λ(n)j and the corresponding eigenvector |φ(n)j 〉.
end j

end n.

The nth loop yields an approximate eigenvalue λ(n)N ≡ E(n) ≡ λ
(n+1)
0 . As for the eigenvector,

at any step of the j -loop, we have

|φ(n)j 〉 = p
(n)
j |φ(n)j−1〉 + q

(n)
j |j〉 (1)

with the appropriate normalization condition [p(n)j ]2 + [q(n)j ]2 + 2 p(n)j q
(n)
j K

(n)
j−1,j = 1. The

iteration of equation (1) yields the nth eigenvector

|ψ(n)〉 ≡ |φ(n)N 〉 = P
(n)
0 |ψ(n−1)〉 +

N∑
i=1

P
(n)
i q

(n)
i |i〉 (2)

where the numbers P (n)
i are

P
(n)
i =

N∏
k=i+1

p
(n)
k (i = 0, 1, . . . , N − 1)

P
(n)
N = 1.

(3)

The algorithm defines therefore the sequence of vectors (2), whose convergence properties we
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can now examine. The q(n)j and p(n)j coefficients can be expressed as

q
(n)
j = |B(n)j |[

(ajjK
(n)
j−1,j − b

(n)
j )

2 + 2K(n)
j−1,j (ajjK

(n)
j−1,j − b

(n)
j )B

(n)
j + (B

(n)
j )2

]1/2

p
(n)
j = (ajjK

(n)
j−1,j − b

(n)
j )

q
(n)
j

B
(n)
j

(4)

where

B
(n)
j =

[
λ
(n)
j−1 − λ

(n)
j

]
− K

(n)
j−1,j

[
(ajj − λ

(n)
j )(λ

(n)
j−1 − λ

(n)
j )
]1/2

. (5)

It is apparent from these relations that, if

|λ(n)j−1 − λ
(n)
j | → 0 ∀j (6)

the sequence |ψ(n)〉 has a limit |ψ〉, which is an eigenvector of the matrix A. In fact, defining
the residual vectors

|r(n)〉 = (Â− E(n)) |ψ(n)〉 (7)

a direct computation gives for their components

r
(n)
l = p

(n)
N

[
(all − λ

(n)
l )(λ

(n)
l−1 − λ

(n)
l )
]1/2

+ q(n)N
{
alN − λ

(n)
N δlN

}
−p(n)N

{(
λ
(n)
l−1 − λ

(n)
l

)
K
(n)
l,l−1 +

(
λ
(n)
N−1 − λ

(n)
N

)
K
(n)
l,N−1

}
. (8)

By virtue of (6), the norm of the nth residual vector converges to zero, namely ||r(n)|| → 0.
Equation (6) gives therefore a necessary condition for the convergence of |ψ(n)〉 to an
eigenvector |ψ〉 of A, with a corresponding eigenvalue E = limE(n). This condition holds
independently of the prescription adopted for selecting the eigensolution. Indeed, we never
had to specify the selection rule in steps (1b), (1e) and (2c). Equation (6) is not only a necessary
but also a sufficient condition for the convergence to the lowest or the highest eigenvalue of
A. In fact, the sequence λ(n)j is monotonic (decreasing or increasing, respectively), bounded
from below or from above by the trace and therefore convergent.

The algorithm we have just outlined has a variational foundation. Its variational
counterpart is just the method of optimal relaxation [4]. Indeed, for the p(n)j and q(n)j given by

equations (4), the α(n)j (= q
(n)
j /p

(n)
j ) derivative of the Rayleigh quotient

ρ(φ
(n)
j ) = 〈φ(n)j |Â|φ(n)j 〉

〈φ(n)j |φ(n)j 〉
(9)

vanishes identically.
On the other hand, the present matrix formulation allows in a straightforward way for the

optimal relaxation of an arbitrary number t of coordinates, thereby improving the convergence
rate of the procedure. We only need to turn the two-dimensional into a (t + 1)-dimensional
eigenvalue problem in steps (1d) and (2b), compute t elements bj in steps (1c) and (2a),
and accordingly redefine the j -loops. The current eigenvector is still defined by the iterative
relation (α(n)kj = q

(n)
k /p

(n)
j )

|φ(n)j+t 〉 = p
(n)
j

(
|φ(n)j 〉 +

j+t∑
k=j+1

α
(n)
kj |k〉

)
(10)
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which automatically fulfils the extremal conditions

∂

∂α
(n)
kj

ρ(φ
(n)
j+t ) = 0 k = j + 1, . . . , j + t. (11)

Moreover, the algorithm can be naturally extended to generate at once an arbitrary number
m of lowest eigenstates. We have simply to replace the two-dimensional matrices with
multidimensional ones having the following block structure: A m × m submatrix diagonal
in the selected m eigenvalues, which replaces λ(n)j−1, a m′ ×m′ submatrix corresponding to ajj
and twom×m′ off-diagonal blocks replacing b(n)j orK(n)

j−1,j . This new formulation amounts to
an optimal relaxation method of several coordinates into a multidimensional subspace. It avoids
therefore the use of deflation or shift techniques for the computation of higher eigenvalues and
eigenvectors.

It remains now to investigate the practical feasibility of the method. The main issues to be
faced are the storage and time requirements. In the one-dimensional case, we need to store a
single N -dimensional vector (the eigenvector). The time is mainly determined by the j loop.
This requires N operations for implementing point (2a) plus k � 15 remaining operations.
Since n = 1, 2, . . . , nc and j = 1, 2, . . . , N , the algorithm requires altogether nc(N2 + kN)
operations. It follows that, for large dimensional matrices, the number of operations grows
like N2. For sparse matrices with an average number L of non-zero matrix elements, the
required number of operations is nc(L + k)N and therefore grows linearly with N . In the
multidimensional case we need to store m N -dimensional vectors. If necessary, however, we
can keep only one at a time and store the remainingm−1 vectors in a secondary storage. This
latter feature clearly shows that the algorithm lends itself to a straightforward parallelization.
Also in the multidimensional case, the number of operations grows as ncmN2.

The algorithm has other remarkable properties: (i) It works perfectly even in the case of
degeneracy of the eigenvalues. (ii) The diagonalization of the submatrices of order m + m′

ensures the orthogonalization of the full N -dimensional eigenvectors at each step. Therefore,
no ghost eigenvalues occur. (iii) The range of validity of the algorithm can be easily enlarged
if we remove some of the initial assumptions. Clearly, the iterative procedure applies to a
non-orthogonal basis. We simply need to substitute steps (1a) and (1d) of the first loop with
the appropriate generalized eigenvalue problem. It applies also to non-symmetric matrices.
We have only to update both right and left eigenvectors and perform steps (1c) and (2a) for
both non-diagonal matrix elements.

In order to test the efficiency and the convergence rate of the iterative procedure, we
have applied the method to several examples. The first is a five-point finite difference matrix
arising from the two-dimensional Laplace equation [5]. This is a block-tridiagonal matrix of
nb b-dimensional blocks, whose eigenvalues are

λij = 4

(
sin2 iπ

2(nb + 1)
+ sin2 jπ

2(b + 1)

)
(12)

where i = 1, 2, . . . , nb and j = 1, 2, . . . , b. As in [5], we considered a block matrix with
nb = 15 and b = 20. We have tested the one-dimensional as well as the multidimensional
version of the algorithm. As shown in figure 1, the iterative procedure converges much faster
in the multidimensional case. In fact, the convergence rate increases with the number ν of
generated eigenvalues and is considerably faster than in Lanczos. It is also to be stressed that
our algorithm allows for an arbitrarily high accuracy, up to the machine precision limit. The
method, especially in its multidimensional extension, is quite effective even if applied to the
same matrix with nb = b so as to allow for degeneracy. For nb = b = 80, it yields the lowest
seven roots, including two couples of degenerate eigenvalues, with an accuracy of 10−12.
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Figure 1. Convergence rate of the present algorithm applied to a finite difference matrix deduced
from Laplace equation [5] for different numbers ν of generated eigenvalues. The data referring to
the Lanczos convergence rate are taken from [5].

A second example, still taken from [5], is a one-dimensional biharmonic band matrix
whose eigenvalues

λk = 16 sin4 kπ

2(N + 1)
k = 1, . . . , N (13)

are small and poorly separated from each other. A similarly high density of levels occurs in
the Anderson model of localization [6]. Because of this peculiarity, the limit of the machine
precision is reached for a modest increase of the dimension N of the matrix. Our method
reproduces perfectly any number of eigenvalues with the required accuracy after a small
number of iterations. In the specific example discussed in [5] (N = 20) we attained the
highest accuracy after eight iterations, much less than all methods discussed there. We have
checked that, unlike others, our method works without any modification even if we increase the
dimension N up to the limit compatible with the machine precision. In this case the number
of iterations needed increase by an order of magnitude, in any case, below 100.

A third example is provided by a matrix with diagonal matrix elements aii = 2
√
i − a

and off-diagonal ones aij = −a or aij = 0 according to whether they fall within or outside a
band of width 2L. Such a matrix simulates a pairing Hamiltonian relevant to many branches
of physics. We have considered a matrix of dimensionN = 108 and half-band widthL = 400.
We found convergence after 28 iterations, reaching an accuracy of 10−8 for the eigenvalues.
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The time required to compute the lowest eigenvalue through the one-dimensional algorithm is
t = 18 697 s for a workstation of 500 MHz and 512 Mb of RAM.

Finally, we generalize the latter example by considering a full matrix of dimension N =
105 with matrix elements aij = 2

√
iδij +(−1)i+j a i+j√

i2+j 2
. Their alternating signs are also to be

noticed, since they decrease somewhat the rate of convergence of the process. We reproduce
the lowest eigenvalue with an accuracy of 10−5, 10−6, 10−7, 10−8 after nc = 42, 70, 155, 330
iterations, respectively.

In conclusion, the present diagonalization algorithm is a generalization of the variational
optimal relaxation method and, on the basis of the examples discussed, appears to be more
competitive than the methods currently adopted. It seems to be faster and to require a minimal
amount of computer storage. It is extremely simple to implement and is robust, yielding always
stable numerical solutions. Moreover, it is free of ghost eigenvalues. Because of these features,
we are confident that it can be applied quite effectively to physical systems, like medium-light
nuclei or quantum dots with few electrons.

The work was partly supported by the Prin 99 of the Italian MURST
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